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Abstract 

Assessment of the presence of hazardous materials in buildings is essential for improving 

material recyclability, increasing working safety, and lowering the risk of unforeseen cost and 

delay in demolition. In light of these aspects, machine learning has been viewed as a promising 

approach to complement environmental investigations and quantify the risk of finding 

hazardous materials in buildings. In view of the increasing number of related studies, this 

article aims to review the research status of hazardous material management and identify the 

potential applications of machine learning. Our exploratory study consists of a two-fold 

approach: science mapping and critical literature review. By evaluating the references 

acquired from a literature search and complementary materials, we have been able to 

pinpoint and discuss the research gaps and opportunities. While pilot research has been 

conducted in the identification of hazardous materials, source separation and collection, 

extensive adoption of the available machine learning methods was not found in this field. Our 

findings show that (1) quantification of asbestos-cement roofing is possible from the 

combination of remote sensing and machine learning algorithms, (2) characterization of 
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buildings with asbestos-containing materials is progressive by using statistical methods, and 

(3) separation and collection of asbestos-containing wastes can be addressed with a hybrid of 

image processing and machine learning algorithms. Analysis from this study demonstrates the 

method applicability and provides an orientation to the future implementation of the 

European Union Construction and Demolition Waste Management Protocol. Furthermore, 

establishing a comprehensive environmental inventory database is a key to facilitating a 

transition toward hazard-free circular construction. 

Keywords  

Machine learning technique; hazardous material management; construction and demolition 

waste; systematic review; asbestos-containing material; polychlorinated biphenyls (PCB) 

 

1. Introduction  

Hazardous building materials, such as construction products containing substances that are 

harmful to human health or the environment, hamper the construction and demolition (C&D) waste 

management process and the quality of the recycled materials. Since C&D waste is the largest waste 

stream in the European Union (EU) countries, the EU Commission developed the C&D Waste 

Management Protocol and level indicators to help the member states achieve a 70 % recycling rate 

of non-hazardous C&D waste by 2020 [1, 2]. In the transition toward circular construction, two 

forces fuel the development of C&D waste management: the push-force comes from the Waste 

Framework Directive 2008/98/EC, whereas the pull-force of regulating hazardous materials derives 

from building certification scope extension. Considering the cost and working safety of handling 

materials during demolition or renovation that might contain unexpected hazardous components, 

obligatory or voluntary pre-demolition audits on environmental inventories have been enforced in 

some EU countries [1, 3]. These measures align with the actions stated in the EU C&D Waste 

Management Protocol, stressing the importance of waste identification, source separation, and 

waste collection [4]. In addition, assessing hazardous materials and waste management in current 

building stock has been included in multiple sustainable building certificates worldwide, including 

Leadership in Energy and Environmental Design (LEED), Building Research Establishment 

Environmental Assessment Method (BREEAM), etc. [5]. Although countries worldwide have 

introduced bans on hazardous building materials for decades, harmful substances might enter the 

waste stream after a long life span during renovation and demolition [6]. A growing concern of 

disturbing residuals hinder the recyclability of the building materials exists. Therefore, the Swedish 

Green Building Council launched the Environmental Building Operation and Administration 

Certification to extend the evaluation of the existing buildings. Environmental investigations on 

building stock facilitate decontamination and can be instrumental for future C&D waste 

management plans. 

Among the hazardous materials, asbestos and polychlorinated biphenyls (PCB) are the most 

investigated substances because of two reasons: their critical hazardous properties and their 

extensive use in the middle of the 20th century. Despite the deployment of the mandatory legal 

requirements, asbestos-containing materials (ACMs) and PCB-containing joints and sealants are 
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diffused in the building stock, making it difficult to determine their location and amount [7]. The 

conventional way of quantifying in-situ hazardous materials is by conducting environmental 

investigations before demolition or renovation. Depending on the scale and activities in already 

completed buildings, environmental audits are performed for the buildings to various extents. 

Complex facilities, such as industrial and public buildings, often require thorough environmental 

investigations by qualified experts. In most surveys, laboratory analysis of samples and product 

labeling recognition were commonly employed by environmental experts for distinguishing harmful 

building materials [6]. Although the approach achieves a high accuracy rate in material identification, 

it is resource-demanding and time-consuming. Further, field sampling and labeling recognition are 

not always possible due to the inaccessibility of the building materials or the ongoing activities in 

buildings. Another major limitation lies in the difficulty of upscaling, leading to only a few buildings 

having environmental inventories. Since the information on the residual hazardous materials in the 

building stock is lacking, the risk of pending demolition work in local municipalities [8] and the 

absence of an organized waste policy of the central authority [3] remain. 

Several studies have tried to develop innovative and cost-efficient methodologies to overcome 

the abovementioned problems. The potential of applying statistical operations in registered records 

[8, 9], creating digital tools for field inventory [10–12], etc., was explored as alternative ways for 

supplementing the existing methods. These novel methods successfully characterized the amount 

and types of ACMs in residential buildings despite the different data input and collection processes. 

To broaden the recognition of in-situ hazardous materials on a large scale, supervised machine 

learning, which enables the prediction of unknown instances based on the historical labels, presents 

a new opportunity to the field. The emergent machine learning techniques can identify critical 

features and patterns from heterogeneous data by harnessing the power of statistics, computer 

science, and domain knowledge. With the improved data availability and the demand for 

decontamination in buildings, researchers started to adopt machine learning techniques to 

streamline the traditional modeling process and enhance the hazardous material recognition rates. 

Pilot studies showed promising results in estimating the amount and the spatial distribution of in-

situ hazardous materials [9, 13] and facilitating semi-automated material sorting [14, 15] by 

adopting machine learning algorithms.  

With regards to the call for improving the quality of C&D waste for resource efficiency, a 

comprehensive literature review on the validity of various methods and their practical 

implementation will be beneficial. Therefore, this review article aims at examining the existing 

approaches and technologies to enhance the efficiency of identifying dangerous building materials. 

By summarizing the state-of-the-art research domains, we can pinpoint the potential applications 

for data-driven in-situ hazardous materials management. Accordingly, two research questions have 

been formulated: 

RQ1: What are state-of-the-art methods for probing hazardous building materials using analytic 

techniques?  

RQ2: What are the available applications for data-driven in-situ hazardous material management? 

This study is, to our knowledge, the first review on the interdisciplinary subject of employing 

machine learning applications in the management of hazardous building materials. The outcomes 

discussed in this article can add academic value by demonstrating the hotspots and gaps in the field, 
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as well as contribute to the EU C&D Waste Management Protocol and guidelines and selective 

demolition1 activities in practice. This systematic literature review incorporates quantitative and 

qualitative dimensions. Science mapping offers an overview of the research dynamics, whereas the 

critical literature review analyzes the contributions of the selected references. The following section 

describes the search process and the structural procedure undertaken for conducting the 

systematic literature review. 

2. Method 

The systematic literature review was performed sequentially in two parts to measure the 

research dynamics in the quantitative and qualitative dimensions, as illustrated in Figure 1. In Part 

I, science mapping (or meta-analysis) contributes to the understanding of the domain evolution and 

describes the dynamics of the major disciplines [16]. The underlying structure of the research 

development and the conceptual and intellectual structure in hazardous materials areas could be 

displayed by performing a bibliometric analysis. The research scope was restricted to only in-situ 

hazardous materials in C&D waste management. Therefore, off-site issues such as waste logistics, 

waste processing, quality management, policy and framework conditions were not included. After 

delineating the knowledge domain, in the critical literature review in Part II, a compilation and 

analysis of the highly relevant research identified in Part I has been presented. In this part, the 

relevant studies in which data analytic techniques have been applied in hazardous material 

management, i.e., hazardous material identification, waste source separation, and hazardous waste 

collection, have been described. The applied machine learning techniques, data input, and their 

purpose of use in the literature have been illustrated in the results mentioned in Part II. By 

associating the outcomes from science mapping and critical literature review, we can answer the 

research questions posed in this article.  

 

Figure 1 The comprehensive review presented in this article consists of a quantitative 

study (science mapping) and a qualitative study (critical literature review).  

The literature search was carried out on April 22, 2020, using the Web of Sciences and Google 

Scholar platforms by considering the various strengths and limitations of the different algorithm 

capabilities. The literature available on Web of Sciences consists of publisher-neutral, peer-

reviewed academic papers, whereas Google Scholar provides higher adaptability in full-text 

searches on any type of documents. Search phrases including the words “hazard”, “(artificial 

intelligence) AI or machine learning”, and “building” topics were combined by using Boolean 

operators. The studies queried were English-based literature, including article, proceeding paper, 

 
1  Selective demolition means the removal of materials from a demolition site in a pre-defined sequence before 
demolition or renovation, in order to maximize recovery and recycling performance. 
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review, conference paper, with the abovementioned terms in the title, abstract, author keywords, 

and as input to Keywords Plus2 without a specific timeframe. The preliminary search yielded four 

hits, and their topics were not directly relevant to the predefined search scope. Accordingly, the 

search was extended to incorporate synonyms of AI and machine learning, such as the words 

“assessment”, “evaluation”, “prediction”, “estimation”, “identification”, and “modeling”. Also, the 

types of investigated hazardous materials were specified by taking into account of their hazardous 

property and universality, such as radon gas from blue concrete and chemical substances from 

impregnated wood. The second search resulted in 436 hits, and this was further refined to exclude 

the irrelevant phrases or abbreviations. This iterative relevance and duplication check by reviewing 

the title and abstract generated 277 relevant results. As a supplement to the initial literature search, 

the same procedure was executed in Google Scholar, and 307 papers were finally chosen for the 

review. Table 1 outlines the iterative search process, search terms, and search specifications.  

Table 1 Steps of the iterative search process and the combination of the search phrases 

used in the three topics by using Boolean operators. 

Step 1: Apply search phrases in Web of Sciences and refine the irrelevant results   

1 Hazard 2 AI/Machine learning 3 Building Hits 

Hazardous materials AND Assess* AND Building* 436 

OR Asbestos   OR Evaluat*  NOT (RD&D* OR windings*  277 

OR PCB   OR Predict*  OR printed circuit board*   

OR Impregnated wood   OR Estimat*  OR circularly polarized*  

OR Blue concrete  OR Identif*  OR grammars* OR electro*  

  OR Model*  OR fire* OR flame*  

  OR AI  OR Earthquake* OR chip*  

  OR Machine learning  OR desiccant system*  

  OR Supervised learning  OR antenna* OR port*  

  OR Pattern recognition  OR Piezotronics*   

  OR Statistical probability  OR Brazilian communist 

party* OR mining* 

 

    OR official development 

assistance*) 

 

Step 2: Add 30 extra relevant papers from Google Scholar for Part I: Science mapping  307 

Step 3: Title, keywords, abstract screening decreased relevant papers  104 

Step 4: Conduct Part II: Critical literature review on the articles with high and medium relevance 57 

Step 5: Identify machine learning techniques and input data for the articles with high relevance 16 

Search specifications:     

Search Engines  Web of Science/Google Scholar  

Timespan  Years (1900–2020)   

Languages English  

 
2 Keywords Plus recognize phrases frequently appear in the title an article's references, but not in the article’s title 
itself. More information about Keywords Plus: 
https://support.clarivate.com/ScientificandAcademicResearch/s/article/KeyWords-Plus-generation-creation-and-
changes?language=en_US 



Recent Progress in Materials 2021; 3(2), doi:10.21926/rpm.2102017 
 

Page 6/24 

Document Types Article/Proceedings paper/Review/Conference paper  

The asterisk (*) is a type of wildcard expression. It implies that any group of characters could be 

combined in the search term. For example, model* will comprise model, models, modeling, etc. 

Science mapping, or more specifically, bibliometric analysis, was executed on the 307 selected 

papers using Biblioshiny3, a bibliometric library in R. Cross comparison among the results provided 

insights into the thematic evolution, the collaboration of prominent authors and institutions, and 

the influential journals in the field of hazardous materials. Subsequently, supplementary sources 

from the references or citation lists and recommendations from search engines were appended 

manually to the document pool. Before the critical literature review, the authors performed a quick 

literature screening to sort out noteworthy references according to the following criteria: (i) high 

relevance to the concepts of hazardous materials AND AI/machine learning/quantitative methods, 

(ii) medium relevance to the ideas of hazardous materials OR AI/machine learning in building 

materials/quantitative methods and (iii) Low relevance to the umbrella terms of AI in the 

architecture, engineering and construction industry, AI in C&D waste management, and AI in circular 

construction. 

The 57 references identified with high and medium relevance were evaluated by adopting the 

preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement, 

developed as an appraisal framework to minimize reporting bias [17]. Complying with the guidelines 

of the PRISMA statement, the following iterative procedure was adopted: (1) understanding the 

research problems addressed in the introduction section, (2) evaluating the effectiveness of the 

research procedure to its research objectives in the methodology section, and (3) reviewing the 

research results and their applications discussed in the discussion and conclusion section. By 

conducting a critical literature review, it is possible to determine the state-of-the-art research fields 

and research gaps.  

3. Results and Discussion 

After acquiring the literature, science mapping was performed to outline the research 

development and determine the significant references. We could delineate machine learning 

applications within the topics of hazardous material identification, waste sourcing, and hazardous 

waste collection through this convergent process. The identified opportunities and challenges 

regarding method implementation in the critical literature review have been synthesized at the end 

of the article.  

3.1 Science Mapping 

By evaluating the meta-data of the acquired 307 references, a full retrospect of the research on 

hazardous building materials in the last three decades was created. The analytical results from the 

research development exhibited an upward trend in interdisciplinary research activities, mainly 

from Environmental Sciences, Public and Environmental Health, and Engineering. Two major 

research themes were identified in the conceptual structure analysis: diseases and risks associated 

with airborne asbestos and exposure to PCB-containing materials in buildings. Significant 

 
3 Biblioshiny: https://www.bibliometrix.org/Biblioshiny.html 

https://www.bibliometrix.org/Biblioshiny.html
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occurrences of the terms “exposure” and “building” dominated the field. By evaluating the 

outcomes of the intellectual structure, a gap between the scientific research and management of 

hazardous building materials in the field of C&D waste was recognized. Despite the growing number 

of studies addressed toward exposure measurement and risk remediation of harmful substances in 

buildings, very few can be integrated into the context of in-situ hazardous material management. 

3.1.1 Literature Distribution 

The first bibliometric analysis performed in this work measured the research developments in 

hazardous material management by characterizing the annual scientific production, thematic 

distribution, and the publication outlet for the references included in this study. The combined 

search resulted in 307 references from 188 sources, including books, journals, and thesis 

publications. Studies in this area were published sporadically during a longer timeframe. However, 

an upward trend was observed since the 1990s with a publication peak in 2016–2018, as shown in 

Figure 2. Over the publication period, the geometric progression ratio was 5.95 %, a constant 

quantity by which each scale factor in a geometry progression was multiplied to be the succeeding 

ones [18]. It indicates the average increasing rate of papers concerning the accumulated sum of the 

published articles. In addition, 70 % of the references were published in the last 15 years. A possible 

explanation for this might be that the awareness of hazardous building materials was first raised 

after international bans and restrictions imposed since the mid-1970s. During the 1990s, countries 

worldwide introduced extensive bans on ACMs in terms of production, import, and sales [19], which 

coincides with the growing development of the field and the increase in the number of relevant 

research activities. 
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Figure 2 Measurement of the research development by quantifying the annual scientific 

publications from 1991–2020 (top right) and evaluation of the thematic distribution of 

the major source publications (bottom left).  

Other than evaluating the number of publications, the thematic distribution of the source 

publications indicates the progress of multi-disciplinary studies. Figure 2 highlights a dispersed, 

uneven thematic composition of the source publications from the acquired references. The 

thematic categories have been listed in descending order according to their proportion. A large 

number of source publications were categorized to “Environmental Sciences & Ecology”, “Public, 

Environmental & Occupational Health”, and “Engineering” according to the Web of Science platform. 

This result indicates the interdisciplinary characteristics of these subjects with general interests in 

quantifying environmental and health-related issues. 

On the other hand, only a handful of papers were published in “Construction & Building 

Technology” related journals, representing 4 % of the total selected references. According to source 

clustering, they were primarily published in Environmental Science & Technology, Chemosphere, 

International Science and Pollutant Research, Indoor and Built Environment, and Journal of 

Hazardous Materials. As a significant number of source publications belong to environmental and 

chemical studies, it was not surprising to see research related to sample monitoring of hazardous 

substances [21, 22], their mitigation and remediation measures [23], and their risk management 

[24]. In the thematic distribution of the publication journals, the references that involved machine 

learning concepts were selected before proceeding to the critical literature review. 

3.1.2 Conceptual Structure 

The conceptual structure benchmarked the research front and domain evolution to identify the 

essential issues in the area, represented in the co-word analysis and word dynamic analysis. The co-

word analysis shown in Figure 3 assembles the most contributing papers and associates similar 

variable categories using multivariate statistics. The multiple correspondence analysis (MCA), a 

modified principal component analysis method used for detecting and representing the underlying 

structures in a nominal categorical dataset, was applied to the references to identify groups of 

words obtained using Keyword Plus with similar profiles and the correlations between the variable 

categories. The results from Keyword Plus were represented as data points in factorial planes (or 

Euclidean planes) after dimensionality reduction. The axis corresponds to the first and second 

principal components, and the percentage accounted for the amount of variance [25]. Correlations 

between the results obtained from Keyword Plus were uncovered by calculating the proportional 

variance between the categorical variables of Keyword Plus and the individual reference [26]. The 

findings indicate that research on asbestos and PCB-related subjects constitutes the most 

knowledge base in the acquired literature. In contrast, keywords related to impregnated wood and 

blue concrete were missing due to insufficient studies. Based on their positions on the two 

dimensions in Figure 3, the variances between the umbrella terms of asbestos (the red group) are 

less significant than those of PCB (the blue group). For example, the keyword asbestos and its 

synonyms4 were associated closely with “occupational exposure”, “lung cancer and mesothelioma”, 

 
4 Asbestos has different forms in construction products, such as chrysotile, amosite, crocidolite. All of them can cause 
asbestosis, mesothelioma, and lung cancer on high levels of exposure. 
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and “mortality risk” in one cluster. On the other hand, the keyword PCB was related to the studies 

on “indoor air contamination” and “congeners exposure” in another cluster. 

 

Figure 3 The co-word analysis measures the similarity and dissimilarity between the 

generated Keyword Plus from the acquired references using the MCA method. 

Dimension 1 (81.86 % explain the variance) covers the opposition between the asbestos 

cluster and the PCB cluster. Dimension 2 (10.49 % explain the variance) includes the 

opposition within each cluster. 

On the contrary, references corresponding to impregnated wood and blue concrete are relatively 

rare. The fewer articles available on these topics might be due to their low presence in buildings 

compared to asbestos and PCB, leading to very few quantitative studies on them. This discrepancy 

can also be attributed to the legislative framework, where asbestos and PCB have their regulations 

and initiatives in the Nordic countries [7]. Furthermore, the word dynamic analysis shown in Figure 

4 presents a divergent tendency of the top 10 research terms cumulated in the past decades. By 

creating an overview of the various timespan, the results indicate the evolved topics. The primary 

research focus is on the working safety and pollutant exposure to asbestos and PCB in the built 

environment. However, the research terms exposure and building experienced explosive growth 

since 2012. Surprisingly, terminologies of hazardous material management, such as risk assessment, 

identification management, working modeling, etc., were less studied subjects. This might explain 

why the literature inquiry to the quantitative research using machine learning techniques yielded 

no distinguished hits since the interdisciplinary topic is still in the embryonic phase. 
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Figure 4 Word dynamic analysis. The cumulated occurrences of the generated Keyword 

Plus present the shift in the research terms in the last three decades. The top frequent 

terms are identified as exposure, buildings, workers, mortality, polychlorinated 

biphenyls, contamination, risk, asbestos, lung cancer, and mesothelioma. 

3.1.3 Intellectual Structure 

The intellectual structure demonstrates the paradigm shift in a given knowledge domain, 

showing the citation relationship between the references [27]. It involves a historical direct citation 

network and a three-field plot. The historical direct citation network was presented in the format 

of historiographic mapping as it provided a general picture of the research topics with respect to 

the citation of core authors and documents. Five primary research paths were identified that are 

presented in Figure 5 with different colors: (1) asbestos concentrations and abatement, (2) 

asbestos-related diseases, (3) pollution and health, (4) asbestos investigation, and (5) PCB sources 

and emissions. To summarize the science mapping section, a three-field plot was created, as shown 

in Figure 6, to determine the correlation between the author's keywords, authors, and publication 

journals. The findings show that the included references were mainly published in the journals 

related to environmental science, such as Environmental Science and Technology, Indoor and Built 

Environment, Environmental Science, and Pollution Research, with various focus areas, in particular, 

environmental health, hygiene, and medicine. It suggested that the management of the in-situ 

hazardous materials and their risk remediation were studied more in relation to environmental 

sciences than in waste management. The critical literature review in the next section explores the 

potential synergies between the two disciplines. 



Recent Progress in Materials 2021; 3(2), doi:10.21926/rpm.2102017 
 

Page 11/24 

 

Figure 5 Historical direct citation network. The citation links by year of publication have 

been categorized into five thematic groups represented in the legends.  

 

Figure 6 Three-fields plot. The most trending author’s keyword (middle) associate with 

the most contributing authors (left) and the frequent publication journals (right). 

3.2 Critical Literature Review 

Growing concern has been expressed within the construction sector [28] about the presence of 

hazardous materials in building products, which hampers circular construction. Thus, various studies 

have tried to address the issue of risk management of hazardous substances in the circular 
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construction value chains and the health and safety aspects of the building stock. Novel tools and 

assessment schemes have been developed for quality control of the C&D waste to minimize the use 

of recycled materials containing hazardous substances [7]. Continuous research for managing 

hazardous residuals in the built environment was found in local contexts. For instance, Donovan 

and Pickin [29] modeled the stock and flow for asbestos metabolism in Australia, Kim and Hong [30] 

proposed safety management and disposal programs for ACMs in extreme conditions in Korea, etc. 

Eventually, the application domains of the 57 references included in the critical literature review 

were mapped out in Table 2.  

Table 2 Categorization of the research domains in the critical literature review (N = 57). 

Research domain No. References 

Machine learning in hazardous material identification 9 [8–13,31–33]  

Machine learning in source separation 2 [15, 34]  

Machine learning in hazardous waste collection 5 [14, 35–38]  

Hazardous building materials  3 [5, 28, 39]  

C&D waste management 5 [2–4, 6, 7]  

Asbestos in buildings and related diseases 14 [24, 40–52]  

PCB in buildings 19 [21, 23, 53–69]  

Although different quantification approaches were developed, a fundamental challenge in the 

risk management of hazardous materials has remained in the disconnected legal frameworks [28]. 

To resolve the structural problem and harmonize separate guidelines, the EU C&D Waste 

Management Protocol and Guidelines were established for improving material identification, 

separation, and collection at the source [4]. The protocol has enabled effective in-situ and off-site 

hazardous material management in the early stage of C&D waste processing. Therefore, to pinpoint 

the significant findings of previous studies within a larger framework, highly relevant studies using 

data analytic techniques were organized following the first part of the objectives of the protocol. 

Figure 7 presents an overview of the available applied machine learning applications specifically for 

data-driven in-situ hazardous material management. Correspondingly, a summary of the critical 

references has been presented in Appendix A, and their major contributions to the field have been 

compiled in Appendix B. 
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Figure 7 Overview of the research applications of the corresponding activity flow in the 

EU C&D Waste Management Protocol Part I [4]. In-situ hazardous material management 

(light green, level 1) comprises of multiple sub-tasks (dark green, level 2) that can be 

complemented by adopting the data-driven applications (light blue, level 3) using 

applied machine learning techniques (dark blue, level 4). 

According to our analysis, the broad concepts of applied machine learning have been adopted 

for hazardous material detection, assessment, estimation, and prediction in the previous studies. 

Algorithms and statistical methods were employed for quantifying the hazardous materials in the 

regional building stock and individual buildings. Mapping the applied machine learning applications 

in the present study can not only add to the current C&D waste practice but also advance the long-

term building stock research as a whole. By associating the research purpose and the corresponding 

machine learning techniques in the acquired literature, we have obtained an overarching picture of 

the state-of-the-art research potential and limitations.  

3.2.1 Machine Learning in Hazardous Material Identification 

Waste identification requires a clear definition of waste and a thorough environmental inventory 

attained from pre-demolition audits (or environmental audits) and waste management plans [4]. 

The environmental inventories provide critical information about the amount and location of the 

hazardous materials, thus increasing safe waste handling by preventing second contamination [6]. 

In addition, they are regarded as a necessary document for selective demolition and on-site waste 

sorting [39]. Therefore, most studies have focused on developing methods for tracing ACMs on 

different scales. Our findings show a trend, based on which other data sources and formats can be 

combined to achieve this goal. For instance, generic data, such as property registers, historical data, 

geographic information system data, etc., and specific data, such as environmental inventory, 

description of ACMs, hyperspectral data, etc., are the essential data inputs for machine learning 

modeling and statistical analysis. Pre-studies on how to manipulate these data to quantify and 
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characterize asbestos were recognized from the literature. However, using them as labels to train 

machine learning classifiers comes in a later research stage. In this sense, previous studies 

contributed an excellent foundation for research by establishing databases and building experience 

in operating multiple data types.  

Research related to statistical learning, presented in Table 3, for in-situ waste identification can 

be approached from a macro- and a micro-perspective. The macro-level involves detection and 

estimation of regional ACMs via image recognition in remote sensing. By compiling the aerial 

photographs, hyperspectral data, and multispectral imagery, Krówczyńska et al. [13] built a hybrid 

database for modeling the quantity and location of asbestos-cement roofing. In their findings, the 

convolutional neural networks exhibited an overall high accuracy in classifying nature color images 

and color-infrared imagery of asbestos-cement roofing from other roof materials. Apart from 

employing the deep learning algorithm, supervised machine learning has also achieved promising 

results in modeling the spatial distribution of asbestos-cement products. According to the study by 

Wilk et al. [9], the Boruta algorithm extracted features effectively from a pool of diverse datasets 

for feature extraction in data preprocessing, including statistical features, building-up areas, field 

inventory, and historical information on asbestos manufacturing plants. By applying these features 

to the random forest (RF) classifier, a satisfactory accuracy rate for mapping the nationwide spatial 

distribution of the amounts of ACMs could be achieved. Their results suggest that the approach is 

transferable for other EU countries to uptake the data on the built environment for predicting in-

situ asbestos.  

Table 3 Summary of the statistical learning techniques applied in hazardous material 

identification. 

Purpose of use Techniques Data specifications References 

Identify asbestos-cement 

roofing 

R-Keras, CNNs Aerial images, hyperspectral 

data, multispectral images 

[13]  

Mapping asbestos-

cement roofing 

Boruta algorithm, RF Statistical features, built-up 

areas, field inventory, 

historical data  

[9]  

Evaluate classifiers 

performance in mapping 

asbestos-cement roofing 

LDFA, QDFA, RF WorldView-2 images [32]  

Bayes, k-NN, SVM, RF  WorldView-2 images [33]  

Identify the presence of 

ACMs 

Cohen's kappa 

statistics 

Mobile app questionnaire, 

asbestos survey  

[10–12] 

Assess amount and cost 

of ACMs 

Scatterplots, 

histograms, Pearson 

correlation  

Building registers, pre-

demolition audits 

[8]  

Predict presence of 

ACMs 

Ontology-based 

approach, 

probabilities 

Approved type project, 

asbestos diagnosis, ACM 

products 

[31]  

* Abbreviation of classifiers: Convolutional neural networks (CNNs); Linear/Quadratic 

discriminant function analysis (LDFA/QDFA); Random forest (RF); k-nearest neighbor (k-NN); 

Support vector machine (SVM) 
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Furthermore, researchers explored various image preprocessing techniques and compared the 

performance of different classifiers to improve their detection accuracy [32]. For instance, Taguchi 

optimization techniques were used for segmenting heterogeneous urban areas before conducting 

an object-based image analysis. In differentiating roof-class and urban features, the RF classifier was 

found to be superior to the other supervised classifiers, such as Bayes and support vector machine 

(SVM), and unsupervised classifiers, such as k-nearest neighbor (KNN) [33]. The results were in 

agreement with the study by Abriha et al. [32], where pan-sharpened imagery was used for 

discriminant function analysis (DFA). Even though linear DFA (LDFA) and quadratic DFA (QDFA) 

helped in classifying the roof class, the accuracy of the RF classifiers outperformed both, in the 

three- and six-class. Despite the various image preprocessing techniques and analyzed methods, the 

two research results are comparable for the same image type and study object. To summarize, 

previous research studies have gained promising progress in developing practical approaches for 

monitoring and quantifying the presence of ACMs with the help of machine learning, which could 

support the authorities to devise an abatement policy and remediation strategies for hazardous 

materials.  

Contrary to asbestos detection on a large scale, no research was found where a machine learning 

model has been applied directly on the micro-scale. However, statistical learning and the relevant 

techniques are observed in statistics to determine in-situ ACMs in a few inference studies. In a case 

study at the city level, Pearson correlation and visual analytics were applied to building registers 

and demolition datasets for characterizing ACMs in abandoned residential dwellings. According to 

Franzblau et al. [8], this approach successfully described the extent and the types of ACMs, and also 

the related remediation costs in abandoned residential dwellings. A similar study in assessing ACMs 

in a residential environment was conducted by Govorko et al. [10] using a different data collection 

approach. Rather than merging the existing datasets from the municipality, they developed a mobile 

application to collect information on in-situ ACMs from the property owners. The self-assessment 

questionnaire results were validated by performing accuracy tests and agreement with expert 

investigations before analyzing Cohen's kappa statistics [11]. Their findings highlighted the frequent 

presence of asbestos (82.3 %) in the residential environment [12], not far from the results (95 %) of 

the study by Franzblau et al. [8]. Both the top-down and bottom-up research methods identified 

prevalent types of ACMs and prioritized remediation in residence. Depending on the sample age 

and dwelling type, results varied in regional contexts. However, the research outcomes can be used 

as data labels in the future for supervised machine learning prediction. Beyond the conventional 

sampling methods, Mecharnia et al. [31] introduced an ontology-based approach to calculate the 

possibility of asbestos presence in buildings based on the temporal data. The limitations of this study 

are the insufficient number of variables and a lack of other relevant references for comparison. 

However, their inference study achieved a satisfactory result in real datasets and demonstrated 

correlation among other parameters. Overall, the statistical elements of these studies contribute to 

understanding the underlying pattern of ACMs in the characteristics of buildings, components, and 

products. The developed methodology can be used for developing machine learning models in the 

future.  

3.2.2 Machine Learning in Waste Source Separation 
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Source separation is essential for eliminating hazardous waste by decontaminating it and 

splitting the side-streams [4, 6]. In the case of ACMs, the requirements for the safety program and 

decontamination were investigated in vermiculite attic insulation in residential premises [70], vinyl 

flooring, asbestos-cement products [47], and asbestos insulation boards in schools [22]. Similarly, 

PCB contamination was found extensively in caulk and sealants in school buildings [21]. On-site 

investigations are standard practice for planning decontamination and locating the side-streams 

before demolition. However, they have limitations and can only be implemented on a small scale 

because of their resource-demanding, time-consuming, and circumstance-specific nature. Machine 

learning models for material recognition can be used for some of these works and can enable 

efficient source separation. The relevant research studies on this aspect have been presented in 

Table 4. 

Table 4 Summary of the machine learning techniques applied in waste source separation. 

Purpose of use Techniques Data specifications References 

Discriminate ACMs from the 

C&D material 

PCA, PLS-DA Hyperspectral minerals 

images  

[15]  

ACMs detection PCA, SIMCA Hyperspectral minerals 

images 

[34] 

* Abbreviation of classifiers: Principal Component Analysis (PCA); Partial Least-Square-

Discriminant Analysis (PLS-DA); Soft Independent Modeling of Class Analogies (SIMCA) 

Effective separation of hazardous materials helps in dividing the mixed C&D waste and increases 

their recyclability. Researchers explored the potential of image data and various types of waste data 

for training supervised, unsupervised, and reinforcement machine learning. In a study by Bonifazi 

et al. [34], an innovative approach based on hyperspectral imaging (HSI) was explored for detecting 

and classifying asbestos fibers. By combining the method of principal component analysis (PCA) and 

soft independent modeling of class analogies (SIMCA), it was possible to differentiate the different 

types of asbestos fibers according to their chemometrics, i.e., amosite, crocidolite, and chrysotile. 

Building upon the result, in a subsequent study by Bonifazi et al. [15], PCA and hierarchical partial 

least-square-discriminant analysis (PLS-DA) were further applied to discriminate the ACMs from the 

rest of the C&D waste flow stream. Their work achieved non-destructive recognition of ACMs in 

C&D wastes. Further research is required to evaluate the accuracy and  granularity of the HSI 

approach for extensive implementation at the industrial level.  

3.2.3 Machine Learning in Hazardous Waste Collection 

Hazardous materials cannot be separated entirely as these dangerous substances might 

retransfer from the secondary contaminants, which are polluted from the primary pollutants [6]. 

Therefore, it is necessary to conduct selective demolition and on-site processing to collect 

hazardous wastes before destruction [4]. Fueled by the economic incentives in the C&D waste 

market and the legislative obligations, a tendency toward semi-selective demolition5  has been 

observed. However, a study by Bergmans et al. [71] expressed concerns about the low quality, 
 

5 Semi-selective demolition is a demolition work where the demolition company selectively collects all hazardous 
substances and the part of the non-hazardous substances that would overly reduce the quality of the stony fraction. 
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incomplete environmental inventory, and insufficient knowledge on the potential presence of 

hazardous materials that could impede the process of selective demolition. Thus, new tracing 

systems for C&D waste quality management were developed and tested in Flanders [71]. Novel 

techniques for optical identification of C&D wastes were developed by Anding et al. [37, 38]. A high 

potential was demonstrated for developing on-site waste management systems by employing 

supervised training and reinforcement machine learning models using the images of the recycled 

materials and aggregates. A summary of the major machine learning applications in this sub-domain 

using image processing is listed in Table 5. 

Table 5 Summary of the machine learning techniques applied in hazardous waste 

collection. 

Purpose of use Techniques Data specifications References 

Develop a waste 

management system 

CNNs, SVM Material images [14]  

Detect construction 

material images 

MLP, RBF, SVM Material images [35]  

Optical identification for 

the C&D waste 

PCA, LibSVM, RF, k-NN, 

J48 Tree, Naive Bayes 

Material & mineral 

aggregate images 

[37, 38] 

 k-NN, C-SVM, Nu-SVM, 

Naive Bayes, RF, J48 Tree 

Material images in VIS 

and IR spectrum 

[36]  

* Abbreviation of classifiers: Random forest (RF); k-nearest neighbor (k-NN); Support 

vector machine (SVM)); Principal Component Analysis (PCA); Multilayer Perceptron 

(MLP); Radial Basis Function (RBF); Convolutional neural networks (CNNs) 

These studies explored the application of image processing of materials and minerals due to their 

favorable outcome in hazardous waste collection. Among all the supervised machine learning 

models, in the study by Kuritcyn et al. [36], the RF and SVM classifiers achieved high total recognition 

rates in classifying images of recycled materials and detecting materials under visible (VIS) and 

infrared (IR) spectrum. This result was also accorded with the corresponding results obtained by 

Adedeji and Wang [14], Rashidi et al. [35], and Anding et al. [38], where a combination of deep 

learning and supervised and unsupervised machine learning was employed. Despite the excellent 

performance of the presently available algorithms in recognizing hazardous materials, Anding et al. 

[37] suggested further improvement for detecting the digital images of mineral aggregates. The low 

identification rate can be attributed to the high phenotypical object variabilities within the 

subclasses. Tese studies open the possibility of automatic optical identification of C&D waste and 

provide advantages of saving time and cost. Future works are suggested to assess the feasibility of 

adopting intelligent waste collection in practice and potential challenges.  

3.2.4 Opportunities and Risks of Adopting Applied Machine Learning 

Previous studies that applied machine learning in ACM identification, separation, and collection 

have achieved good progress. They have proved the potential of using multiple data inputs to train 

supervised machine learning classifiers. Their results showed that high-quality data, adequate 

sample size, and the use of domain knowledge are the key factors that lead to high prediction rates. 
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Hence, establishing comprehensive databases for compiling the information of buildings and their 

environmental records are prerequisites for enabling data-driven hazardous material management. 

Additional empirical studies are required for addressing the risk of lacking patterns, which is still 

unclear when scaling up the research to the building stock level and extending the data scope to 

multiple hazardous materials. Further, to bridge the gap between theoretical and practical 

implementation, it is necessary to consider the stakeholders' perspectives when determining the 

subjects for prediction. By creating a deeper understanding of the potential opportunities and risks 

of applied machine learning, researchers and practitioners in the relevant domains can make a joint 

effort to expedite long-term progress in circular construction. 

4. Conclusions  

The rapid development of C&D waste management has been shaped by the tightened legislation 

for circular construction and extending the assessment for a healthy building stock in certification. 

This is because very large amounts of ACMs and PCB-containing materials have diffused into the 

built environment from the middle of the 20th century, leading to extreme difficulty in the 

decontamination of the building environment. Therefore, researchers have tried to develop data-

driven approaches to improve hazardous material management. The purpose of this paper is to 

review the up-to-date quantitative studies and identify the research gaps and implementation 

opportunities. The deficiency of the relevant literature has indicated that only a few studies have 

been conducted on this emergent subject. The science mapping findings have also suggested an 

interdisciplinary research field based on the wide distribution of the publication journals and their 

scopes. In the case of building-related publication, remediation and risk assessment for asbestos 

and PCB were observed to be the most addressed topics, whereas hazardous materials in C&D waste 

were studied as a minor stream. This fact signifies that the research of in-situ hazardous material 

management and demolition processing is not integrated. Further, despite the understanding of the 

dangerous properties of these materials and the advanced techniques developed for monitoring 

them, investigation of hazardous materials is still restricted to a limited scale. Difficulty in their visual 

recognition, lack of regulatory mandates, costly and time-consuming laboratory sampling are a few 

attributes that explain the stagnant development in this field. The introduction of new investigation 

approaches to exploit the existing environmental information effectively can provide an alternative 

solution.  

Machine learning is a promising method that can supplement environmental investigations due 

to its power of predicting unknown instances based on historical records. In the critical literature 

review, we analyzed the various applied machine learning techniques and data input with respect 

to hazardous material identification, separation, and collection. This analysis has shown that a 

combination of algorithms and preprocessing techniques achieve high accuracy in distinguishing 

ACMs without intrusive sampling. Supervised machine learning was, foremost, the most explored 

subarea, and the RF and SVM classifiers vector machine perform the best in most cases. Mapping 

and quantifying ACMs on the regional scale can be achieved via remote sensing, whereas 

characterization and identification of buildings contaminated by asbestos can be attained using 

statistical techniques. Although studies on the building environment have not yet reached the 

machine learning level, their results offer valuable insights for feature selection. 
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On the other hand, hazardous waste separation and collection can be realized by employing 

image processing for separating the ACMs in C&D wastes. Most studies have adopted imagery data 

to train the classifiers, whereas the other research direction exploits the established databases. Our 

work contributes to an in-depth overview of machine learning applications in hazardous material 

management and facilitates the implementation of the EU C&D Waste Management Protocol. Even 

though applied machine learning research in the field of hazardous material is still in the early stage, 

great potential has been demonstrated, and further practical implementation awaits to be explored. 
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