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A B S T R A C T   

Identifying in situ hazardous materials can improve demolition waste recyclability and reduce project un
certainties concerning cost overrun and delay. With the attempt to characterize their detection patterns in 
buildings, the study investigates the prediction potential of machine learning techniques with hazardous waste 
inventories and building registers as input data. By matching, validating, and assuring the quality of empirical 
data, a hazardous material dataset for training, testing, and validation was created. The objectives of the 
explorative study are to highlight the challenges in machine learning pipeline development and verify two 
prediction hypotheses. Our findings show an average of 74% and 83% accuracy rates in predicting asbestos pipe 
insulation in multifamily houses and PCB joints or sealants in school buildings in two major Swedish cities 
Gothenburg and Stockholm. Similarly, 78% and 83% of recall rates were obtained for imbalanced classification. 
By correlating the training sample size and cross-validation accuracy, the bias and variance issues were assessed 
in learning curves. In general, the models perform well on the limited dataset, yet collecting more training data 
can improve the model’s generalizability to other building stocks, meanwhile decreasing the chance of over
fitting. Furthermore, the average impact on the model output magnitude of each feature was illustrated. The 
proposed applied machine learning approach is promising for in situ hazardous material management and could 
support decision-making regarding risk evaluation in selective demolition work.   

1. Introduction 

Hazardous materials hamper material recyclability and value re
covery from end-of-lifecycle buildings [1]. The contaminants entering 
the waste stream and re-contaminating other building components 
during reconstruction, renovation, or demolition challenge the newly 
formed circular economy chain in the building sector [2,3]. As such, 
appropriate risk management means that assessing the extent of 
contamination from the existing building components is necessary to 
facilitate circular economy-inspired actions [3]. Currently, inventory of 
hazardous waste is performed during the pre-demolition audits for in
dividual buildings to guide the waste management process [4]. To 
ensure safe and sustainable management of construction and demolition 
waste, the EU Construction and Demolition Waste Management Protocol 
(EC, 2016) and Guideline were introduced to enhance the confidence in 
the waste management process and the trust in the quality of recycled 
materials [4,5]. Through early detection, source separation, and onsite 
collection, selective demolition work that processes the material frac
tions for high-quality recovery can be planned accordingly [1,2]. 

Nowadays, the attitude toward in situ hazardous material manage
ment has changed from passive monitoring to predictive maintenance 
by taking precautionary actions into account [6]. By processing the 
operation data, the gaps in maintenance practice can be addressed to 
support the facility management avoiding unfavored consequences 
without costly onsite inspections [7]. Conventionally, the risk of 
asbestos and polychlorinated biphenyls (PCBs) exposure was usually 
controlled through regular sampling [8,9]. With respect to the sub
stantial decontamination and high disposal cost, short-term mitigation 
measures such as transport pathway blocking, concentration dilution, 
and source removal are usually regarded as viable alternatives [9]. At 
the crossroad of transition towards the circular built environment, along 
with the need to implement predictive maintenance, developing new 
approaches to identify hazardous materials extensively has become a 
focus in interdisciplinary research fields [1,2,10]. 

Identifying in situ hazardous materials in the existing building stock 
can, on the one hand, help property owners manage health exposure risk 
and possible project disturbance; on the other hand, contribute to a 
closed material loop for construction and demolition waste as a whole 
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[2]. However, the information concerning the presence of hazardous 
materials in buildings is usually inadequate, leading to unforeseen 
events during reconstruction or renovation [10]. Around 20% of addi
tional costs for acute decontamination have been reported in demol
ishing residential buildings [10]. Therefore, the detection records on 
hazardous waste inventories from the past demolished and renovated 
buildings have become a valuable source for studying the potential 
detection patterns of hazardous materials [2]. The emergent artificial 
intelligence and digitalization in data capture and visualization can 
improve information availability and assist decision-making in building 
material assessments [1,11]. 

Among all substances in the EU Waste Framework Directives (WFD 
2008/98/EC, amended 2018/815), asbestos and PCB-containing mate
rials are rigorously regulated owing to their critical properties and regu
lations [12]. Hence, quantitative studies on inferring their likely presence 
in the building stock have been conducted in several countries [13]. For 
instance, an ontology-based method for estimating the probability of 
asbestos-containing materials was proposed by Mecharnia et al. [14]. By 
employing building registers and asbestos detection records in a 
rule-based logic, the use of asbestos-containing materials at the product, 
location, structure, and building levels were evaluated. However, lacking 
complete product descriptions limited the application of inductive logic 
programming and rule discovery approaches. Besides, attempts have been 
made to probe other possibilities to retrieve data. Using a self-assessment 
mobile application, the type of in situ asbestos-containing materials and 
their condition could be investigated and documented [15,16]. Never
theless, a small sample size and a self-selected sample population might 
cause selection bias and make it hard to generalize the results to the na
tional scale [17]. To overcome the sampling bias and characterize the 
occurrence pattern of asbestos-containing materials, the potential of using 
a public reconstruction and demolition database containing inspection 
records of hazardous waste, as input data were explored. Applying data 
abstractor, visualized plotting, and statistical correlation study, 
asbestos-containing materials’ location, type, amount, and abatement 
costs were obtained [10]. The abovementioned examples and their 
promising results devote pioneering efforts in exploring data-driven 
building material management. 

In light of the difficulty to access building-specific environmental data 
[12] and low adoption of information technologies in construction and 
demolition waste management [18], machine learning shows a substan
tial potential for pattern identification in records. By utilizing data labels 
in the training dataset, predicting the unknown examples through 
recognizing critical features of contaminants is possible [13]. Due to their 
promising prediction performance and high model generalization, ma
chine learning classifiers have been widely deployed in image recognition 
for construction materials, hyperspectral images, and aerial photographs 
[13]. Several supervised learning classifiers were proved to detect 
asbestos-containing materials effectively, among all, the convolutional 
neural networks used for asbestos cement roofing identification [19] as 
well as the random forest algorithm applied to predict the spatial distri
bution of asbestos cement roofing [20]. Other algorithms, such as the 
statistical classifier Naïve Bayes, the distance-based classifier k-nearest 
neighbor (k-NN), the tree-ensembled classifier random forest (RF), and 
the support vector machines (SVM), can also achieve higher prediction 
accuracy than traditional rule-based, object-based image analysis in op
tical recognition [21]. However, several limitations of applying machine 
learning in construction and demolition management were also high
lighted by previous research, including complex interdependencies be
tween feature representation, type of classifiers as well as hyperparameter 
tunning and regularization [22], as well as a lack of labeled data to train 
and validate the models [23]. 

Despite considerable progress in pioneering studies, adopting the 
developed models in practice remains slow. This is generally due to low 
model transferability and generalization from specific buildings to other 
buildings [22]. The heterogeneous structure and content of 
pre-demolition audit documents make the detection results comparison 

challenging [24]. The extensive use of hazardous materials in past 
construction projects and their variety lead to extreme difficulty char
acterizing the nature of exposure. Moreover, some materials are not 
even visually recognizable and require expertise in sampling and anal
ysis in the lab. Therefore, the possibility of using hazardous waste in
ventories as input data to assess the risk of hazardous materials in the 
regional building stock was studied by Wu et al. [12]. The machine 
learning preprocessing work regarding data validation and representa
tiveness control performed in previous study laid a solid foundation for 
algorithm development. As the pre-demolition audit process has been 
enforced in several European countries [25], the data-driven method is 
replicable to ascertain the positive detection rates and delineate building 
types with quality data. 

2. Scope of the paper 

Although various predictions have been made for building materials 
recognition using image data, utilizing records from inventories of haz
ardous waste for comprehensive hazardous material prediction at the 
building level remains rather unexplored. The paper aims to explore the 
prediction potential for the presence of hazardous materials in specific 
buildings classes with a proposed machine learning pipeline. By verifying 
expert assumptions in the pre-demolition audit practice, the understand
ing of the occurrence patterns for residual contaminants can be further 
enhanced. Two common hazardous materials and their presence in two 
types of buildings based on previous literature – asbestos-containing pipe 
insulation in multifamily houses and PCB-containing joints or sealants in 
school buildings – will be investigated as case studies. Through assembling 
hazardous waste inventories data from the Swedish cities of Gothenburg 
and Stockholm as well as their building registers to a hazardous material 
dataset, the possibility of succeeding in pattern identification with su
pervised learning algorithms increases. Since the performance of machine 
learning classifiers is susceptible to the variation of sample size and the 
inclusion of validated observations, the effect of an increase of training 
data helps examine the optimal data size for prediction. By tuning and 
regularizing the potential features, the most appropriate classifiers for the 
task can be determined. The prediction results from the explanatory ma
chine models can form the basis of contaminant risk management at the 
building stock level. Thus, the paper contributes to predictive mainte
nance of the existing buildings in terms of safe managing of demolition 
waste. To facilitate the objective of the study, three interconnected 
research questions were formulated as follows: 

RQ1: Which machine learning classifier provides the best results for 
the task? 
RQ2: How many training examples are needed to obtain sufficient 
prediction results? 
RQ3: What are the influential factors for predicting the target haz
ardous materials in the specific building classes? 

3. Materials and methods 

The section describes the research process and the main tasks per
formed in the study, illustrated in Fig. 1. First, an overview of the data 
source regarding data assembling and matching was provided, followed 
by data validation and processing to delineate the underlying structure. 
Potential key variables identified in explorative data analysis and 
feature engineering were subsequently employed in supervised models’ 
development. Tuning the selected features and regularizing various 
machine learning classifiers can optimize the prediction accuracy for 
model evaluation. Finally, influential features associated with the pre
diction outcomes were outlined in result interpretation. 

3.1. Data source 

A hazardous material dataset consisting of 906 detection records and 
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national building registers were compiled to study the presence of 
hazardous materials in the Swedish building stock. The detection re
cords encompass hazardous waste inventories of demolished and reno
vated buildings between 2010 and 2020 retrieved from the Gothenburg 
and the Stockholm City Archives. Buildings built before 1990 are 
especially of interest as asbestos and PCB-containing materials were 
used extensively in construction. Detailed inventories, such as reports 
and protocols, accounted for most of the acquired documents with 
specification of the detected hazardous materials and investigated 
buildings. 

Merging the municipality cadastral register, the real estate taxation 
register, and the Energy Performance Certificates (EPC) data form a 
basis for a comprehensive national building registers database that 
contains building parameters for individual buildings. The national 
building register database was created with GIS Feature Manipulation 
Engine from the Safe Software, referring to the work by Johansson et al. 
[26]. As the aggregation level for hazardous waste inventories is at the 
building level, pairing the registered data at multiple levels may cause 
uncertainty in data merging. For instance, the Swedish real estate 
taxation register adopts value units that are in most cases at property 
levels, while the EPC register is structured according to the EPC index 
that attaches to one or more properties with one or more buildings. 
Therefore, extra attributes were introduced to reduce the risk of inac
curate data merging and retrieval, i.e., the total number of possible 
matching relationships and the potential duplicates. According to na
tional building registers, around 73.3% of buildings in Gothenburg and 
84.6% of buildings in Stockholm are constructed before 1990 and thus 
more likely to contain contaminants. 

Further on, the national real estate indexes of the investigated 
buildings were used as the common key to find the match between the 
building-specific information and the building registers. The matching 
between registers and inventory data was performed manually by 
examining the address, construction year, and floor area in the one-to- 
many relationship to ensure correct data coupling. The results of each 
observation were labeled with different matching codes according to 

information conformity. In case of lacking information on building class 
or construction year, the observations were dropped out to reduce 
irrelevant data noise. Considering parameters of construction year, 
renovation year, and floor area exist in several registers, revised vari
ables harmonizing the inventory data and the building registers were 
created for subsequent analysis with Python statistical visualization li
braries Matplotlib and Seaborn. By the end of the data cleaning, 848 
eligible observations remained. An overview of the variable character
istics in the hazardous material dataset is displayed in Table 1. 

To clarify which hypothesis was viable for attempted prediction, a 
cross-validation matrix was created using Python scientific computation 
package Numpy to evaluate data quality and quantity. The information 
of the acquired inventories was processed in formula (1) to calculate the 
assessment scores, which became the basis for prioritizing quality data 
subgroups for modeling. The scale of y is between 0 and 100 with per
centage as the unit. The building classes with comprehensive detection 
records and large sample sizes were considered. They are for example 
school buildings, multifamily houses, commercial buildings, offices, and 
industrial or production buildings [12]. Stratifying data subsets with 
similar building parameters can prevent the risk of false inference. 

y=
(Ir × nr + Ip × np + Ic × nc + Id × nd)

n
∗ K (1)   

y = Assessment score. 
I = Inventory type for weighting individual observations. I = 1 if is 
the report (r), I = 0.75 if is the protocol (p), I = 0.5 if is the control 
plan (c), and I = 0.25 if is the demolition plan (d). 
n = The number of observations in the studied subgroup [0 < n]. 
N = The number of observations in the entire dataset. 
K = The number of observations enough for statistical operation. 

K = 1 if n ≥ (0.05*N), K = 0.5 if (0.025*N) =< n < (0.05*N), K =
0 if n < (0.025*N). 

Fig. 1. The study design consists of four parts: (1) data sourcing for acquiring building registers and hazardous waste inventories from authorities, (2) data pro
cessing for variables transformation and feature selection, (3) machine learning model development and evaluation using 10-fold nested cross-validation, (4) result 
interpretation for generating explainable machine learning model and evaluating feature importance. 
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3.2. Data processing 

The data processing work, such as dataset partitioning, variable 
transformation, and feature selection, were executed with Pandas and 
scikit-learn, the data analysis and machine learning libraries for Python. 
Dataset partitioning was performed first to avoid data leakage, then 
approximately 20% of the data points were held out for model valida
tion. Then the rest of the observations were randomly separated into 
75% of training data and 25% of testing data for model training. This 
resulted in splitting the dataset to 60% of training, 20% of testing, and 
20% of validation subsets. A balance between the size of the training, 
validation, and testing subsets was determined based on the amount of 
the training data to prevent generalization errors [27]. 

Afterward, variable transformation was performed for algorithm 
optimization, especially for scale-invariant classifiers like the decision 
tree and the random forest [27]. The labels of categorical variables were 
encoded and continuous variables were standardized to a comparable 
scale. The non-null values were quantified for the entire dataset to detect 
the amounts of missing data, which is essential for determining the 
useable variables and the data filling strategy. For categorical variables, 
missing values cannot be computed, but the missing numerical variables 
were imputed and replaced with mean values. Further filtering the 
buildings with extreme parameters, such as construction year earlier 
than 1900 or later than 1990, floor area over 25 000 m2, and the number 
of floors above 15 stories, to have a more homogeneous and represen
tative dataset for the Swedish building stock. With these criteria, the 
outliers, including eight multifamily houses and 43 school buildings, 
were detected, and removed from the modeling dataset. 

The last step before modeling, feature selection, was implemented to 
improve the accuracy of the models, reduce training time and data 

dimensionality for better generalization performance [27,28]. Mean
while, model complexity was regulated, and the risk of overfitting was 
reduced for unregularized classifiers. The Recursive Feature Elimination 
(RFE) method was employed to remove variables recursively by evalu
ating the prediction accuracy and returning the most contributing fea
tures based on the optimized model [29]. The optimal number of 
features was determined through plotting cross-validated accuracy 
scores and the number of selected features. Next, feature importance 
was evaluated by tree-based estimators to validate the feature selection 
results. The Extremely Randomized Trees Classifier (Extra Trees) com
putes the Impurity-based feature importance based on the averaged 
impurity decrease from all decision trees in the forest without making 
assumptions about the data linearity [27]. Combining the results from 
the Extra Trees classifier and the RFE, the identified key features were 
then used as predictive variables for model development. 

3.3. Machine learning modeling 

To address the classification problem of heterogeneous data in a 
small tabular dataset, various supervised algorithms were tested during 
model development: logistic regression, kernel support vector machines 
(SVM), k-nearest neighbors (k-NN), random forest, extreme gradient 
boosting (XGBoost), and CatBoost. Incorporating classifiers with 
different strengths and weaknesses helped evaluate the bias and vari
ance trade-off for searching the optimal models. The bias error results 
from erroneous assumptions in the algorithm and causes model under
fitting; whereas the variance error is derived from sensitivity to small 
fluctuations in the training dataset and leads to model overfitting. An 
ideal model with a good generalization capability for the unknown data 
should have a balanced bias and variance trade-off. The chosen 

Table 1 
An overview of the variable characteristics in the hazardous material dataset. The modeling part was split into 60% training, 20% testing, and 20% validation subsets.  

Data Value category Data specification Measurement types 

Model part Geographics City Nominal [Gothenburg, Stockholm] 
Building usage EPC building category Nominal [premise building, multifamily house, premise and special building, single and two-dwelling 

house]  
EPC building type Nominal [detached, gable, intermediate] 

Building parameter Construction year Scale variable [year]  
Renovation year Scale variable [year]  
Floor areas Scales [m2]  
Number of floors Ordinal [N]  
Number of apartments Scales [N]  
Number of stairwells Scales [N]  
Number of basements Scales [N]  
Ventilation type Nominal [exhaust, balanced, balanced with heat exchanger, exhaust with heat pump, natural ventilation] 

Hazardous substance Asbestos Nominal [positive, negative, NA] 
PCB Nominal [positive, negative, NA] 

Hazardous material Building component a Nominal [positive, negative, NA] 
Complementary 

part 
Matching keys National real estate 

index 
String & numeric [index] 

Address String  
Matching code Nominal [1–8] 

Permit application Project description String 
Building usage Building classb Nominal [single-family house, multifamily house, temporary dwelling, school, office, commercial building, 

production building, industrial building, warehouse, and other/infrastructure]  
Municipality category 
code 

Nominal [1–7]  

Municipality type code Nominal [1-99] 
Inventories of 
hazardous waste 

Scope Nominal [entire, part of the building] 
Investigation year Scale variable [year] 
Investigator String 
Decontamination Nominal [asbestos, PCB, NA]  

a The building components imply the building materials that contain human or environmentally hazardous substances. The asbestos-containing materials include 
pipe insulation, valves, door/windows insulation, cement panel, tile/clinker, carpet glue, floor mat, ventilation channel, switchboard, joint, and other asbestos 
products. The PCB containing materials encompass joint/sealant, sealed double glazing windows, capacitor, acrylic flooring, door closer, cable with PCB-oil, and other 
PCB products. 

b The building class refers to the primary use of the building on the permit application and the building type in building registers and EPC. Ten building classes were 
created to synthesize different category systems and details between the data sources – single-family houses, multifamily houses, temporary dwellings, schools, offices, 
commercial buildings, production buildings, industrial buildings, warehouses, others/infrastructure. 
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classifiers are non-parametric models that can learn from growing pa
rameters in the training data, summarized in Table 2. 

Logistic regression is a basic linear classifier that represents the class 
distribution probability. Computing without assumptions and suitability 
for the low dimensional dataset is thus used as a base model to compare 
prediction performance with other classifiers. SVM features margin 
maximization using the closest data points to maximize the distance 
between the separating hyperplane [27]. The kernel SVM with radial 
basis function projects the linearly inseparable training data to 
higher-dimensional feature space and train a linear SVM to classify the 
data. SVM was reported powerful in handling high dimensional data, yet 
it has low bias and high variance, thus requiring careful feature stan
dardization and parameter tuning [30]. In comparison, k-NN is an 
instance-based algorithm that quickly adapts to new training data by 
classifying the k samples based on the distance metric and the majority 
vote. Varied k and Euclidean distance measures were tested to prevent 
dimensionality-based overfitting as regularization was not applicable 
for the algorithm. However, a common shortcoming of these algorithms 
in the study is that they require numerical inputs. 

On the other hand, tree ensemble algorithms such as random forest, 
XGBoost, and CatBoost benefit the information gained in the iterative 
decision-making process and can vastly improve model interpretability. 
The random forest algorithm exploits the performance of average mul
tiple trees to counteract the high variance of a single tree without 
specifying hyperparameter values. XGBoost contains the advantages of 
the random forest classifier and further evolved with boosting and 
gradient boosting, where new models to predict the residuals before 
making a final prediction were created [31]. Featuring a scalable tree 
boosting system, XGBoost outshines other tree-based algorithms 
regarding parallelized tree building and pruning for system optimiza
tion, as well as regularization, sparsity awareness, and built-in cross-
validation in algorithmic enhancements [32]. Further on, CatBoost was 
adopted to process categorical features and prevent target leakage by 
implementing ordered boosting [33]. Although the classifier has a wide 
application in interdisciplinary fields, it is sensitive to hyperparameter 
change and time-consuming for hyperparameter tuning [34]. 

Next, the class imbalance between positive (represented as 1) and 
negative (represented as 0) detections was handled by oversampling the 
minority groups. Having both classes equally presented in the dataset is 

essential for dealing with classification problems as most of the machine 
learning algorithms assume an unbiased dataset. In this way, poor pre
dictive performance for the minority class may be due to the skew 
dataset, where algorithms are sensitive to classification errors for the 
minority class than the majority class, can be prevented [35]. These data 
resampling techniques can also address cost-sensitive learning when 
false-negative errors are valued differently from the false-positive errors 
[36]. By changing the composition of the class distribution, the cost 
proportionate weighting can fulfill the expectation of minimizing the 
misclassification errors. 

Evaluating the algorithms’ performance and tuning their hyper
parameters enable us to find the optimal model. The training models 
were assessed in terms of generalization with nested cross-validation, 
illustrated in Appendix A. Nested cross-validation is a wrapper of an 
outer loop with numerous training and test folds to train optimal pa
rameters, and the inner loops at the training folds to tune parameters 
and select the model using k-fold cross-validation [27]. Then the test 
fold in the outer loop is applied to assess the model performance. Nested 
cross-validation was preferable due to the limited amount of data. 
Meanwhile, hyperparameter tunning was performed through the grid 
search method. Modifying the architecture of the models implies 
adjusting regularization constant, kernel type, and constants in SVM or k 
values in k-NN to tackle generalization errors of learning algorithms. 
The grid search method of testing a wide range of hyperparameter 
combinations was employed for the purpose. Next, additional data were 
fed into the models to evaluate the accuracy change. The generated 
learning curves can measure the bias-variance trade-off and control the 
risk of overfitting. 

Finally, the classifiers’ performance was evaluated with the confu
sion matrix on the accuracy, precision, recall, and the F1-score, illus
trated in (2)–(5) in Appendix B Fig. B1. Accuracy measures the number 
of correct predictions over the number of total predictions, whereas 
recall estimates the fraction of retrieved relevant instances. The assess
ment criteria for high accuracy and recall rates were chosen given the 
defined prediction goal for extracting hazardous material detection. 
Besides, a binary classifier evaluation system was schemed to assess and 
tune the ensemble classifier. The receiver operating characteristic (ROC) 
curve was plotted with various discrimination thresholds to diagnose the 
trade-off between sensitivity (True positive rate) and specificity (False 

Table 2 
Characteristics of the selected algorithms used in the study.  

Algorithm Description Regularization Strengths Limitations 

Logistic 
regression 

Linear classifiers for the discrete variable as the output is 
transformed to log-odds 

No  • Probability estimation  
• No assumptions about class 

distributions in feature space  
• Coefficient size and direction of the 

association  

• Require no multicollinearity between 
independent variables  

• Overfitted in high dimensional 
datasets 

Kernel SVM A distance-based classifier that maximizes the gap 
between the projected data 

Yes  • Handle high dimensional data  
• Perform well on a wide range of 

datasets  

• Scale variant and need parameter 
standardization  

• Require parameter tuning  
• Kernel needs to be specified 

k-NN An instance-based classifier that assorts the data based 
on the distance metric and the majority vote 

No  • Incremental learning  
• Simple implementation  

• Scale variant and need parameter 
standardization  

• Require parameter tuning 
Random 

forest 
A tree-ensembled classifier that ensembles the 
predictions of multiple trees 

No  • Scale-invariant  
• Reduced overfitting  
• Parallel processing  
• No parameter specification required  

• Hard to interpret the result  
• Require parameter tuning 

XGBoost A tree-ensembled classifier that features a scalable 
gradient boosting system 

No  • No regularization required  
• Handle missing data  
• Parallel processing  
• Built-in cross-validation  
• High accuracy and robust  

• No support for categorical feature 
transformation  

• Computation intensive and long 
training time 

CatBoost A tree-ensembled classifier that exploits order boosting 
with categorical features 

No  • Reduced overfitting  
• Transform categorical feature  
• Parallel processing  
• Wide application  
• High accuracy and robust  

• Sensitive to hyperparameters change  
• Require parameter tuning  
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positive rate). The goal was to achieve high area values under the roc 
curve (ROC AUC), where 1 implies high separability and low separa
bility in the case below 0,5. The refined ensembled models were verified 
on the testing subset for unbiased performance evaluation before model 
deployment. 

3.4. Results interpretation 

The prediction results from machine learning models are sometimes 
hard to understand and explain by human experts. However, developing 
transparent models interpretable by domain knowledge helps control 
scientific consistency [37]. Several methods have been proposed to ease 
the tension between accuracy and interpretability. For instance, SHap
ley Additive exPlanations (SHAP) was created as a unified framework to 
explain output from machine learning models. Each feature is assigned a 
SHAP value to visualize its contributions to the model output [38]. 
Accordingly, a two-step approach was implemented to facilitate results 
interpretation: (1) applying the SHAP explainer with different models 
and inserting the generated SHAP values into summary plots. From here, 
the information regarding the prediction score, base value, feature 
magnitude, and direction, as well as classification results, can be ob
tained; (2) involving domain experts to assess the coherency between 
the feature importance identified by the SHAP framework and the sci
entific assumptions from field practice. Adopting the hybrid approach 
can comprehend the inherent prediction mechanism of machine 
learning models and evaluate hazardous material risk in specific build
ing classes based on influential features. 

4. Results 

The results section presents the statistical analyses of the hazardous 
material dataset, then evaluates prediction results between the models. 
After that, the impact of the data size on model performance was 
described, and the influential features were highlighted. 

4.1. Presentation of the data 

The detailed investigation documented in reports (68.4%) and pro
tocols (16.4%) accounted for the major sources of observations in the 
hazardous material dataset (N = 848), indicating high data reliability 
considering the experience of investigators and sampling method. 
Around 65.6% of environmental investigations concerned the entire 
buildings, and 55.8% of the observations had undergone renovation. 
However, most of the decontamination history is unknown. The avail
able data shows that approximately 7.1% and 4.4% of the buildings 
underwent PCB or asbestos decontamination. Furthermore, the number 
of missing values and class distribution was plotted to control the data 
completeness and skewness. It was found that 93% of observations 
contain information on asbestos and asbestos-containing materials, 
while the counterpart of information on PCB is 73%. The stacked his
tograms in Fig. 2 show the detection frequency of asbestos and PCB 
across varied building types. Surprisingly, 74% and 45% of the buildings 
are exposed to asbestos and PCB, respectively. Within these contami
nated building stock, multifamily houses, schools, and commercial 
buildings represent significant proportions of positive asbestos or/and 

Fig. 2. The stacked histograms display the detection records of asbestos (upper) and PCB (bottom) across building classes in the Gothenburg and the Stockholm 
building stocks built between 1900 and 1990 (N = 813). Positive detections are denoted as 1, vice versa. 
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PCB detection. 
Afterward, the numbers of asbestos and PCB detection were 

normalized to visualize the aggregated density distribution to assess the 
contamination likelihood. The distribution tendency in Fig. 3 indicated 
that buildings constructed between 1955 and 1975 are more likely to 
contain hazardous materials. This period corresponds to large housing 
programs – the post-war era (1945–1960) and the Million Homes Pro
gram (1965–1974), and most of the Swedish building stock nowadays is 
inherited from that time. The peaks of the asbestos and PCB risk were 
observed around 1965 and dramatically decreased after 1975 when the 
likelihood of negative detections exceeded the positive detections after 

the use bans. Besides, compared to PCB, the shift of distribution between 
the positive and negative detection of asbestos along the timeline is 
more evident. This entails that the construction year may be a relevant 
factor for determining the presence of asbestos. 

Hazardous materials common in specific building classes and thus 
suitable for machine learning modeling were determined. Table 3 below 
describes the score ranking of the results from the cross-validation ma
trix, along with the statistical features of each data subgroup concerning 
the positive detection rates, the total and available data amounts, and 
the numbers of missing values. High assessment scores were obtained for 
asbestos joints, floor mats, ventilation channels, tiles or clinker, carpet 

Fig. 3. The aggregated normalized density distribution for asbestos (left) and PCB (right) detection.  

Table 3 
The top score ranking of the data subgroups for each hazardous material in particular building classes using the cross-validation matrix. The subgroups with cross- 
validation scores over 90 were listed.  

Rank Class Substance Building part Score Rate Total NA(%) N 

1 Multifamily House Asbestos Joint 99 0.67 153 63 57 
2 School Asbestos Floor mat 98 0.35 154 45 86  

School Asbestos Ventilation channel 98 0.40 154 60 62 
3 Multifamily House Asbestos Ventilation channel 96 0.47 153 48 79  

Multifamily House Asbestos Others 96 0.65 153 65 54  
School Asbestos Tile/clinker 96 0.25 154 28 112  
School Asbestos Carpet glue 96 0.24 154 37 97  
Commercial building Asbestos Door/windows insulation 96 0.65 85 44 48  
Commercial building Asbestos Tile/clinker 96 0.28 85 33 57  
Commercial building Asbestos Floor mat 96 0.48 85 41 50 

4 Multifamily House Asbestos Floor mat 95 0.57 153 48 79  
School Asbestos Pipe insulation 95 0.46 154 37 98  
School Asbestos Door/windows insulation 95 0.37 154 46 83  
School Asbestos Joint 95 0.37 154 68 49  
Commercial building Asbestos Pipe insulation 95 0.76 85 31 59  
Commercial building Asbestos Ventilation channel 95 0.34 85 48 44  
Commercial building PCB Sealed double glazing windows 95 0.18 85 48 44  
Production Building Asbestos Pipe insulation 95 0.76 75 32 51 

5 Multifamily House Asbestos Door/windows insulation 94 0.81 153 37 96  
Multifamily House Asbestos Tile/clinker 94 0.50 153 29 109  
School Asbestos Cement panel board 94 0.41 154 55 70  
School PCB Sealed double glazing windows 94 0.10 154 47 82  
School PCB Capacitors 94 0.47 154 50 78  
School PCB Acrylic flooring 94 0.04 154 52 75  
Commercial building PCB Joint/sealant 94 0.27 85 39 52 

6 Multifamily House Asbestos Cement panel board 93 0.73 153 64 55  
Multifamily House Asbestos Carpet glue 93 0.53 153 50 77  
Commercial building Asbestos Carpet glue 93 0.47 85 40 51 

7 Multifamily House Asbestos Pipe insulation 92 0.82 153 18 126  
School Asbestos Valves 92 0.09 154 72 43  
School PCB Joint/sealant 92 0.18 154 40 93 

8 Multifamily House PCB Joint/sealant 91 0.28 153 58 65  
Multifamily House Asbestos Sealed double glazing windows 91 0.17 153 66 52 

*Positive detection rate = Number of Positives/(Total number of observations—Number of NA). 
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glues, door or windows insulation, and pipe insulation. On the contrary, 
PCB-containing materials have slightly lower scores than asbestos- 
containing materials, of which sealed double glazing windows, capaci
tors, acrylic flooring, and joints or sealants are promising for analysis. 
Their presence in schools, multifamily houses, and commercial buildings 
shows potential for modeling with relatively high data amount and 
quality. Synthesizing the data evaluation results, asbestos pipe insu
lation in multifamily houses and PCB joints or sealants in school 
buildings were chosen for further machine learning prediction. 

The data characteristics of potential variables for predicting asbestos 
pipe insulation in multifamily houses and PCB joints or sealants in 
school buildings were illustrated in Table 4. The asbestos pipe insulation 
subset contains 139 multifamily houses with an average construction 
year of 1955 and the renovation year of 1997. On average, the multi
family buildings are 3677 m2 with five stories, one basements, three 
stairwells, and 42 apartments. On the other hand, the PCB joints or 
sealants subset comprises 103 school buildings. The average construc
tion year is later (1962), and the floor area is smaller (2643 m2) 
compared to multifamily houses. The height of the school building is 
generally lower (1 story), and mostly with one basement but without 
stairwells. By featuring the building parameters of the studied building 
classes help determine the application boundary and representativeness 
of the prediction outcomes. 

4.2. Performance evaluation between classification models 

Feature selection, involving the recursive feature selection (RFE) and 
the Extra Tree classifier, was performed prior to applying the input data 
to the machine learning pipeline. Determining the number of features 
and feature sets can impact predictive models and thus are crucial 

hyperparameters to be configurated. The automatic tuning of the feature 
number using RFE was presented in Fig. 4, and the relevant features 
were ranked according to their relative importance with Extra Trees 
classifier in Fig. 5. The findings show that the optimal number of fea
tures for asbestos pipe insulation based on the cross-validation accuracy 
is seven and influential features are: floor area, construction year, the 
number of apartments, the number of stairwells, renovation year, and 
the number of floors. On the other hand, the favorable number of fea
tures for PCB joints or sealants are four, namely, floor area, construction 
year, balanced ventilation systems, and renovation year as critical fea
tures for prediction. 

Data resampling was performed to facilitate cost-sensitive learning 
for imbalanced classes. This entails that the minority class is required to 
be oversampled to have an equal number in both classes. In this case, the 
number of negative detections of asbestos pipe insulation was over
sampled to 94 and returned 188 observations for predictions. A similar 
skewed issue in the PCB joints subset was also addressed with the same 
approach. The fraction of negative detections is four times higher than 
the positive detections. Hence, the number of positive detections was 
oversampled to 54 and resulted in 106 observations for identical weights 
for misclassification. Afterward, iterating the prediction pipeline with 
varied combinations of features into the six supervised classifiers, the 
optimal models for specific prediction tasks were highlighted. The 
confusion matrix summarized in Table 5 showed promising prediction 
results. The comparable accuracy and recall rates within each classifier 
indicated a balance of correct retrieval of true positives from all obser
vations and relevant observations. With three features, the presence of 
asbestos pipe insulation can be predicted to 74% and 78% of average 
accuracy and recall rates, as well as 87% and 91% of average accuracy 
and recall rates for tree-ensembled classifiers. Random forest and 

Table 4 
The overview of the potential variables for predicting asbestos pipe insulation in multifamily houses and PCB joints or sealants in school buildings.  

Potential features Unit Feature representation Average Feature representation Average 

Asbestos pipe insulation PCB joints or sealants 

City – (Gothenburg, Stockholm) – (Gothenburg, Stockholm) – 
EPC building 

category 
– (Premise, multifamily building) – (Premise, multifamily building) – 

EPC building type – (Detached, gable, intermediate) – (Detached, gable, intermediate) – 
Construction year Year (1903–1977) 1955 (1906–1983) 1962 
Renovated – (0,1) – (0,1) – 
Renovation year Year (1959–2018) 1999 (1940–2016) 1993 
Floor area m2 (174–23297) 3677 (135–17164) 2643 
Numbers of floors N (1-14) 5 (1–7) 2 
Number of 

basements 
N (0,1,2,3+) 1 (0,1) 1 

Number of 
stairwells 

N (0-22) 3 (0–5) 0 

Number of 
apartments 

N (0–376) 42 – – 

Ventilation type – (Exhaust, balanced, balanced with heat exchanger, exhaust with heat 
pump, natural ventilation) 

– (Exhaust, balanced, balanced with heat exchanger, 
natural ventilation) 

–  

Fig. 4. Cross validation score as function of number of features used for selecting the optimal number of features. The optimal feature number for asbestos pipe 
insulation prediction (left) was seven and PCB joints or sealants prediction (right) was four. 
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XGBoost reached the highest prediction rates. To predict PCB joints or 
sealants, more features were used and returned 83% and 83% of average 
accuracy and recall rates, as well as 93% and 92% of average accuracy 
and recall rates for tree-ensembled classifiers. The random forest and the 
CatBoost had the optimal prediction performance among the classifiers. 

As an alternative performance evaluation matric for classification 
models, the receiver operating characteristic (ROC) graph plots the true 
positive rate (TPR) against the false positive rate (FPR) with the shifting 
decision threshold of the classifier, illustrated in Appendix B Fig. B2. 
AUC is scale-invariant and classification-threshold-invariant, which 
implies that it measures how well the predictions are ranked irrespective 
of what classification threshold is chosen [39]. A diagonal plot of ROC 
represents random guessing, whereas the preferable classifier will 
configure top left with a TPR of 1 and an FPR of 0 [23]. The ROC area 
under the curve (AUC) can thus be used to evaluate a classifier’s per
formance within a range of 0 and 1. Fig. 6 shows the ROC AUC of the 
selected classifiers for the two prediction hypotheses. In terms of 
asbestos pipe insulation prediction in multifamily houses, CatBoost 
(AUC = 0,96) and the random forest classifier (AUC = 0,92) performed 
similarly well on the validation data subset. These ensemble classifiers, 
including the random forest, XGBoost, CatBoost classifiers (AUC = 1, 
00), also outperformed individual classifiers in predicting PCB joints or 
sealants in school buildings and achieved a higher average AUC 
compared to pipe insulation classification. The results from AUC align 
with the conclusion of the previous confusion matrix that the pattern of 

Fig. 5. The relative feature importance ranking for asbestos pipe insulation (left) and PCB joints or sealants (right) are listed in descending orders. The y axis 
concerns the normalized feature importance values and summed up to 1.0. 

Table 5 
The performance accuracy and recall rates of the optimal models for asbestos 
pipe insulation and PCB joints or sealant predictions.  

Prediction Asbestos pipe insulation 
(N = 188) 

PCB joints or sealants (N 
= 106) 

Selected features Construction year, Floor 
area, City 

City, EPC category, 
Exhaust, Balanced, 
Balanced with heat 
exchanger, Natural 
ventilation, Construction 
year, Number of floors, 
Floor area, Number of 
basements, Number of 
stairwells  

%accuracy %recall %accuracy %recall 

Logistic regression 55 62 67 68 
SVM 50 58 67 69 
kNN 74 78 81 81 
Random forest 89 92 95 94 
XGBoost 89 92 90 89 
Catboost 84 88 95 94 

Average 74 78 83 83 
Average (tree-ensembled) 87 91 93 92  

Fig. 6. The receiver operating characteristic curve plots the performance of the selected classifiers across the true positive rate and the false positive rate, measured 
by the area under the curve (AUC). The ROC curve for asbestos pipe insulation in multifamily houses (left) and PCB joints or sealants in school buildings (right). 
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PCB joints was easier to be identified, and the tree-ensembled classifiers 
perform better than other tested classifiers for the predefined prediction 
scopes. 

4.3. Impact of the data size on model performance 

Learning curves were schemed to diagnose bias and variance trade- 
off of the developed models and investigate whether more data input 
is needed to address the issue. In Fig. 7, the training accuracy and the 10- 
fold cross-validation accuracy with the increasing number of training 
samples were plotted. In all cases, the standard deviation of the vali
dation scores was larger than the training scores. Besides, the overall 
validation accuracy rates reached 75–85% for the tree ensembled clas
sifiers with a minimum of 50 data points. The learning curves for 
asbestos pipe insulation prediction suggest high bias and underfitting in 
the logistic regression and the SVM models; in contrast, the k-NN, 
XGBoost, and CatBoost models appear to be high variance with a large 
gap between the training and cross-validation accuracy. As for PCB 

sealants or joints prediction in school buildings, the learning curves 
indicate that the k-NN model is slightly underfitting with low training 
and cross-validation accuracies, while the tree-ensembled models tend 
to be overfitting. The logistic regression and the SVM model obtained a 
balanced bias and variance trade-off. To deal with the underfitting 
problem, the number of model parameters needs to be increased, or the 
degree of regularization should be decreased. On the other hand, the 
overfitting problem can be addressed with more training data, simplified 
models, increasing the regularization parameters, or reducing the 
number of features. 

4.4. Influential features for prediction 

The SHAP values were adopted to explain individual predictions and 
interpreted each feature’s impacts. In Fig. 8, the overview of the SHAP 
values for every sample in the XGBoost and the CatBoost models, along 
with their feature values, were presented. Although various models may 
rank features in a different order, the overall influence of the feature 

Fig. 7. Learning curves were created for selected classifiers to diagnose the bias and variance problem of the predication models by projecting the average accuracy 
changes in relation to increasing data the amount for training subset. The shaded areas of the training accuracy (expressed in blue) and validation accuracy 
(expressed in green) indicate the variance of the estimates. 
(7.1) The learning curves of the selected classifiers in predicting asbestos pipe insulation in multifamily houses (the upper six figures). 
(7.2) The learning curves of the selected classifiers for predicting PCB joints or sealants in school buildings (the lower six figures). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 
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values on model output is aligned. If the SHAP values are close to 0, the 
features have nearly no contributions to the prediction output. For 
example, the EPC building category and building type had almost no 
impact on prediction and thus may be ignored by classifiers. The find
ings also show that the construction year has a significant impact on 
predicting asbestos pipe insulation in multifamily houses, followed by 
floor area, the number of stairwells, renovation year, and the number of 
apartments. The higher values of the construction year, renovation year, 
the number of basements, the more likely the multifamily houses are 
predicted with asbestos pipe insulation. In the case of PCB joints or 
sealants, construction year, balanced ventilation system, and floor area 
are the most crucial features for both models. If the schools were built in 
the later decades with balanced ventilation and a larger floor area, they 
were more probably be associated with the risk of PCB joints or sealants. 
To sum up the impact magnitudes of each feature, the aggregated sum of 
the SHAP value over all samples was presented in Appendix C. 

5. Discussion 

The section discusses the feasibility of using machine learning to 
predict the presence of hazardous materials in the building stock, spe
cifically, the prediction results of asbestos and PCB-containing materials 
in two building classes in Gothenburg and Stockholm in Sweden, as well 
as the uncertainties in data preprocessing. 

5.1. Prediction result interpretation 

Collecting the training data for building stock analysis is effort and 
resource-demanding [40]. Given the variety of buildings and diverse 
ways to measure and document information, accessing the eligible and 
structural building-specific data is somehow challenging [41]. In addi
tion, low data quality and the exclusion of extreme values also lower the 
available amount of data. Concerning the issue, Althnian et al. [42] 
explored the impact of dataset size on classification performance. Their 
results revealed that the overall performance of classifiers depends more 
on the dataset representation of the original distribution than data size. 
Also, there is a tendency that particular classifiers perform better than 
the others for the small tabular datasets with a mix of numerical and 
categorical data. Irrespective of the different building classes and data 
sizes in predicting asbestos pipe insulation and PCB joints or sealants, 
the random forest, XGBoost, and CatBoost classifiers had robust per
formance across data subsets. Our results agree with the previous study 
by Cha et al. [43] regarding the development of prediction models based 
on small datasets. The random forest classifier is proven to predict de
molition waste generation with limited input variables effectively; yet, 
one should be aware of possible dataset overfitting, based on the results 
of the learning curves, due to the strong adaptability of the 
tree-ensembled algorithms. Collecting more data or/and intensifying 
algorithm regularization are desirable approaches to resolve the issue 
[27]. 

Fig. 7. (continued). 
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The attempts of estimating the spatial distribution of asbestos cement 
roofing have been probed by Wilk et al. [20] and Krówczyńska et al. 
[19]. The potential of using the random forest classifier on aerial images 
and convolutional neural network on multispectral data to map national 
asbestos-cement roofing was verified with around 76% and 89% accu
racies. In comparison, an average high prediction accuracy of 87% for 
asbestos pipe insulation in multifamily houses were obtained in the 
actual study with tree-ensembled classifiers. In fact, other 
asbestos-containing materials, such as door or windows insulation, 
cement panel, tile or clinker, carpet glue, floor mat, ventilation channel, 
and joints, also show high modeling potential for the multifamily 
houses, schools, and commercial buildings, based on the 
cross-validation scores. Whether the synergies of detection patterns 
between these contaminated building components exist requires further 
investigation. 

On the other hand, no previous relevant studies are found regarding 
the prediction of PCB-containing materials using machine learning 
techniques; instead, these focus primarily on PCB stock estimation and 
exposure reduction. The results are not surprising as developing artifi
cial intelligence applications for waste generation estimation, onsite 
sorting, and collection rather the focus areas in the previous construc
tion and demolition waste management research. For instance, Akanbi 
et al. [44] and Cha et al. [45] predicted demolition waste generation 
based on deep learning models and the decision tree method. Bonifazi 
et al. [46,47] developed asbestos waste recognition tools for onsite 
sorting using unsupervised learning on hyperspectral images. A combi
nation of image processing and supervised learning classifiers for recy
cled aggregates identification was explored by Kuritcyn et al. [48] and 
Anding et al. [22] for waste fraction collection. Nevertheless, studies 
featuring the in situ hazardous material identification from end-of-life 

Fig. 8. The summary plots visualize the impact of features on the model output. The observations were represented as a single dot for each feature and densified 
along the x-axis. The red dots in the feature flow signified high feature values, while the blue dots were low feature values. 
(8.1) The feature impacts on asbestos pipe insulation prediction in the XGBoost model (left) and the CatBoost model (right) for multifamily houses (the upper 
figures). 
(8.2) The feature impacts on PCB joints or sealants prediction in the XGBoost model (left) and the CatBoost model (right) for school buildings (the lower figures). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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building stock are few and mostly remain on descriptive analysis using 
statistical approaches. Franzblau et al. [10] and Govorko et al. [15,17] 
characterized the frequent asbestos-containing materials, asbestos types 
and conditions, as well as the disturbing likelihood in residential 
buildings. In light of the broad uptake of pre-demolition audits for 
enabling circular construction [5], along with its integration with the EU 
REACH regulation (EC 1907/2006, Registration, Evaluation, Authori
zation, and Restriction of Chemicals) [3], more data-driven material 
assessment tools associated with the risk of hazardous materials can be 
expected to aid selective demolition [11]. 

When predicting the presence of hazardous materials, the false 
negative (Type II error) has a more serious consequence than the false 
positive (Type I error). To address the uneven cost of misclassification, 
the cost-sensitive learning was explored in this study by resampling the 
imbalanced class, and the prediction accuracy and recall rates obtained 
were nearly equally high. There are other methods in theory to achieve 
the same objective, including cost-sensitive algorithms and cost- 
sensitive ensembles [36]. The former modifies the class weight, i.e., 
SVM, decision tree, or appends costs as a penalty for misclassification, i. 
e., logistic regression. The latter refers to wrapper methods (or 
meta-learners, ensembles) by relabeling examples in the training dataset 
to minimize data preprocessing costs [36]. The application of these two 
techniques is limited to algorithm-specific augmentations and is 
time-consuming for developing and testing; thus, it is not feasible for the 
study when multiple classifiers are involved. Empirically, the misclas
sification costs are determined by domain experts, and the performance 
varies accordingly. To calculate the optimal cost weights, Lu et al. [49] 
tested the grid searching and the fitted function strategies. Their finding 
showed that the fitted functions of the extreme learning machine, a 
single hidden layer feed-forward neural network learning algorithm, are 
more effective in achieving a high weighted classification accuracy. This 
method’s adaptability and stability, when used on the hazardous ma
terial dataset, remain to be explored. 

The current understanding of the factors relating to hazardous ma
terial detection is limited. Using product labels to identify the building 
components’ production year or manufacturers is common in practice, 
especially for PCB-containing sealed double glazing windows and 
asbestos-containing fire doors [50]. The timeline of the product used in 
construction is by far the most acknowledgeable feature for pattern 
identification of hazardous materials. Mecharnia et al. [14] verified the 
possibility to use this through exploiting temporal data of the use of 
asbestos products to estimate the presence probability. Wilk et al. [51] 
also explored the determinants associated with the amount of 
asbestos-cement roofing and pinpointed the following factors: regional 
building stock structure, geographical distance to manufacturing plants, 
construction year, and the economic situation of the municipality. 
Regardless of distinct building stock compositions in different contexts, 
our study also highlighted the significant impact of the construction 
year, renovation year, and the medium-to-low impact of the city the 
building situated. 

The influential features identified by the Extra Tree classifier are 
quite aligned to the features with high SHAP values in XGBoost and 
CatBoost models. However, in our comprehensive search for the optimal 
feature combinations of the highest prediction performance, the best- 
performed feature set can differ from the suggested number of the fea
tures from the REF due to varied computational logic behind algorithms. 
Through assembling the recognized contributing features from model 
preprocessing and post-analysis, it is evident that construction year, 
renovation year, floor area, the number of stairwells and apartments are 
critical features for asbestos pipe insulation prediction in multifamily 
houses. Nevertheless, adding these features in complex models led to a 
drop in overall accuracy. An opposite situation was observed in pre
dicting PCB joints and selants in school buildings. Simple models with 
few features were advised by REF, yet the highest overall accuracy was 
attained by modeling on several features. The identified important 
feature from feature selection is principally in agreement with those 

with high impact magnitudes. Attaching additional information such as 
city, EPC building category, and specific building parameters to the PCB 
joints and selants models can slightly increase the prediction 
performance. 

5.2. Data uncertainty 

Building stock data are, by their nature heterogeneous and unstan
dardized, which poses substantial challenges for data enrichment and 
analysis. To add building-specific information to the building registers 
database, many relationships require to be established to couple the 
empirical and registered data correctly [52]. However, these relation
ships are sometimes lacking due to poor data quality [53], varied ag
gregation levels [26], or incomplete information [54]. These issues were 
also experienced in the data matching between multiple building reg
isters and hazardous waste inventories. The matched observations with 
one-to-one relationships constitute 69.0% of the dataset. 

To deal with the data uncertainty, it is therefore of great importance 
to stratify eligible data with similar characteristics. Stratifying the ob
servations with the same building class and similar building parameters 
helps remove outliers prior to modeling. The cross-validation matrix 
proved to be an effective way to identify feasible hypotheses for testing 
by considering their available data quality and quantity. Multifamily 
houses and school buildings present a promising modeling potential, yet 
some data limitations need to be clarified. For instance, the pre- 
demolition inventories from multifamily houses were usually created 
for the specific renovated area; thus, the inventory records may not be 
fully representable for this building class. In addition, school buildings 
lack real estate taxation data and are challenging to distinguish from 
similar buildings on the complex property. Despite these underlying 
data uncertainties, these two building classes are more homogeneous in 
terms of building features, the choice of materials, and parallel con
struction periods [26]. Besides, previous research on characterizing 
asbestos-containing materials in residential dwellings [10,17], as well as 
PCB-containing components in residential areas [55] and school build
ings [9], are available. This domain knowledge and the expert as
sumptions from pre-demolition auditors navigate the selection of the 
potential features and the focus on predicting hazardous materials. 

In this study, the inventory data extraction and compiling rely on 
manual operations as the no query-based, single-format, digital data
bases for pre-demolition audit documents exist. Also, the registered data 
were not structured for analysis purposes, making merging and match
ing difficult. To raise public awareness of asbestos while supporting data 
collection, Govorko et al. [15,16] developed a mobile phone application 
to identify asbestos-containing materials in residential dwellings and 
automatically generate assessment reports. Utilizing the self-assessment 
yields an advantage for transforming the field data in a machine-friendly 
manner. Based on the same concept, if the digital protocol for hazardous 
waste inventories is designed and used to retrieve the building registers 
data with the respective national real estate index and building ID, a lot 
of time on the desk study and the risk of potential recording or esti
mation errors of the building parameters, i.e., construction year, reno
vation year, and area can be minimized. This bottom-up approach can 
also contribute to register data synchronization, as well as instant 
version control. 

6. Conclusions 

The study demonstrates the possibility of applying machine learning 
in predicting hazardous materials in particular building classes based on 
inventories of hazardous waste and building registers. Two prediction 
hypotheses – asbestos pipe insulation in multifamily houses and PCB 
joints or selants in school buildings - were tested and evaluated with six 
supervised classifiers. Using cost-sensitive learning, the tree-ensembled 
classifiers, i.e., random forest, XGBoost, and CatBoost, performed well in 
the small, low dimensional datasets. According to the learning curves, 
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high validation accuracies, namely 75–85%, were obtained for the tree- 
ensembled classifiers after training on a minimum of 50 data points. 
Construction year, floor area, renovation year, the number of stairwells 
and apartments were vital features for predicting the presence of 
asbestos pipe insulation in multifamily houses with the optimal average 
accuracy and recall rates of 74% and 83%. In comparison, average ac
curacy and recall rates of 78% and 83% were obtained for predicting 
PCB joints or sealants in school buildings with construction year, 
balanced ventilation, floor area, and balanced ventilation with heat 
exchanger. 

Enhancing the quality of the mixed waste is a prerequisite for real
izing circular material in construction and relies on accurate hazardous 
material identification in semi-selective demolition. The study presents 
the challenges of utilizing the past hazardous waste inventories from 
pre-demolition audits for data-driven management. These insights from 
the post-analysis perspective can be valuable for the EU Construction 
and Demolition Waste Management Protocol concerning data consis
tency, quality, and completeness. Future research is advised to test the 
machine learning pipeline on inventory data from building stocks in 
other municipalities and integrate the learning outputs to improve the 
model’s generalizability on the national and international scale. 
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Appendix A

Fig. A1. A diagram of nested cross-validation for optimal hyperparameter selection, adopted from Raschka and Mirjalili [23]. The outer loops of training folds and 
test folds were cross-validated with optimal parameters. Then the training folds of the outer loops were further divided into micro training fold and validation fold in 
the inner loops, where Grid Search was conducted for parameter tuning. 
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Appendix B

Fig. B1. Confusion matric adopts the performance metrics, such as accuracy (ACC), precision (PRE), recall (REC), and F1-score, to evaluate the model relevance.  

Fig. B2. The AUC is the area under the ROC curve used for measuring the model’s classification performance. A higher AUC implies better model performance 
(Adopted from Evispot [39]). 

Appendix C

Fig. C1.1. The impact magnitudes of the features on asbestos pipe insulation prediction in the XGBoost model (left) and the CatBoost model (right) for multi
family houses.  
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Fig. C1.2. The impact magnitudes of the features on PCB joints or sealants prediction in the XGBoost model (left) and the CatBoost model (right) for school buildings. 
Fig. C1. The bar plots summarized the average impact of features on the model output magnitudes. 
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[19] M. Krówczyńska, E. Raczko, N. Staniszewska, E. Wilk, Asbestos-cement roofing 
identification using remote sensing and convolutional neural networks (CNNs), 
Rem. Sens. 12 (2020) 1–16, https://doi.org/10.3390/rs12030408. 
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